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1. ABSTRACT L

The Ada Programming Language [ADA), was designed to meet the need for a
standard computer programming language. Ada has the ability to take advantage of
multiprocessor environments. One feature, known as the rendezvous, allows tasks to
synchronize in such a environment. In this paper, we will look at the performance of the N,.

\da rendezvous in a two-processor system. 4 rl

In a distributed Ada system, the rendezvous provides synchronized communication
between asynchronous tasks. A system of this sort would consist of at least two
processors, each serving various tasks. Presently, the performance behavior of tasks
which synchronize and possibly communicate are not widely known. Developers of
concurrent Ada systems will need to perform sensitivity studies of the Ada tasking
environment to develop efficient time-critical programs. Therefore, we will discuss
Rendezvous Response Time from the point of view of a sensitivity study . We will show
generalized performance curves of the rendezvous along with commentary on their
performance elbows (or bottlenecks). Rendezvous Response Time will be defined as the
amount of time one task must wait until its rendezvous request to another task is
completed. The discussion will be based on two separate computer simulations of a two-
processor system. The tools to be used to build these simulations are [ELSIR] and
[APOSL].

I1. PERFORMANCE MEASURES FOR A TRANSACTION
BASED SYSTEM

We present a discussion on the average Rendezvous Response Time for the
following transaction based two-processor system. (By a transaction based system, we
mean a system in which there is a continuous stream of customers arriving for service
from the system. When each customer has completed its service requirements, it departs
from the system completely.) Rendezvous Response Time will be defined as the amount of
time one task must wait until its rendezvous request to another task is completed. The
discussion will be based on data collected from a computer simulation of the two-
processor system.

We will assume all arrival rates of customers to the model are Poisson
distributed with appropriate average arrival rate parameters and that their service
demands on the processors are exponentially distributed with appropriate average
service demand parameters.



From here on, the word "average" will be assumed where appropriate.

A. DESCRIPTION OF THE TRANSACTION BASED SYSTEM

Consider a two-processor system as drawn in Figure 1. Task SERVERTASK will
execute exclusively on one processor that we will call Server Processor. SERVERTASK
will have the following form.

task body SERVERTASK is
begin

loop
accept Data_Exchange (...) do

end DataExchange;
end loop;

end SERVERTASK;

SERVERTASK will execute as a reentrant task, servicing one rendezvous request made
to its "DataExchange" entry each time it gains access to the processor. This service will
be done in a first-come, first-served manner. Also, there will be other Zasks that arrive
at Server Processor at some average rate and will provide contention with
SERVERTASK for processor resources. These tasks play no role in the rendezvous itself
and will be called the "traffic tasks" of Server Processor. Each of these tasks will
require only a finite amount of service time before exiting the entire model.
SERVERTASK will enter and remain in the SERVERTASK delay server whenever there
are no rendezvous requests to service.

Traffic Tasks

Server Processor

- 0
SERVERTASK Delay Server

Traffic Tasks

Client Tasks 111
Client Processor

- 0
Client Task Delay Server

Figure 1. The transaction based two-processor system.

At the second processor, other tasks will arrive at some given rate. These tasks
will make rendezvous requests to SERVERTASK. Thus, we will refer to these tasks as
"client tasks" and this processor as Client Processor. In this case, client tasks will have
the form of CLIENTTASK as defined below.



task body CLIENTTASK is

begin

SERVERTASK.DataExchange ...

end CLIENTTASK;

A client task arrives at Client Processor and enters the processor queue. When it
is selected for service, the client task makes a rendezvous request with SERVERTASK
and is put in a "blocked" state (i.e., a state where the client task is no longer allowed to
continue execution on its processor) and enters the rendezvous delay server. At this
point, the Client Processor is assigned to another task in the queue. Client tasks that
enter into the rendezvous delay server will remain there until their rendezvous request
is serviced by the SERVERTASK. The amount of time that a client task spends in the
rendezvous delay server is its Rendezvous Response Time. Also at Client Processor, tasks
that play no role in the rendezvous will arrive for service. We refer to them as the
"traffic tasks" of Client Processor. It should be noted that the "traffic tasks" of Server
Processor and Client Processor are two different customer classes of the model.

By assuming the Forced-Flow Law, the arrival rate of client tasks to Client
Processor is equal to the arrival rate of rendezvous requests to the "DataExchange"
entry queue. A consequence of this assumption is that the Rendezvous Response Time will
only be dependent on the arrival rate of client tasks to Client Processor, the arrival rate
of traffic tasks of Server Processor, the service demands of these traffic tasks on Server
Processor, and the service demand of SERVERTASK on Server Processor.

B. COMPUTER SIMULATION RESULTS

Figure 2 are general curve drawings of the Rendezvous Response Time based on
simulated data of the transaction based system. For these curves, UR is defined as the
Server Processor utilization devoted to the execution of SERVERTASK working to
complete each rendezvous and UH is defined as the Server Processor utilization
devoted to the execution of its traffic tasks. It can be analytically shown that

UR = (tArrival rate of client tasks) .( Service demand of SERVERTASK )
to Client Processor at Server Processor

U H  - Arrival rate of traffic task Service demand of traffictasks
to Server Processor at Server Processor

(Recall that the arrival rate of client tasks to the Client Processor is equal to the arrival
rate of rendezvous requests to the "DataExchange" entry queue.)

Throughout Figure 2, all service demands are fixed with the arrival rates varied
to obtain the utilities. Each curve is sketched as a function of U11 with UR fixed at
the following values.

A. For Curve (1), UR is fixed at 60%.



B. For Curve (2), UR is fixed at 40%.
C. For Curve (3), UR is fixed at 20%.
D. For Curve (4), UR is fixed at 10%.
E. For Curve (5), UR is fixed at 5%.

a)(4)
E (5)

(2)
U)
0o (1)
CL

n"

0

C0

0 20 40 60 80

U H (%)

Figure 2. Graph of the .Rendezvous Response Time as determined from simulated
data of the transaction based system.

C. DISCUSSION OF RESULTS

Consider the curves of Figure 2 that correspond to small values of UR . A
noticeable "elbow" appears in them at various values of UH . To the left of the elbow,
the curve increases slowly. To the right of the elbow, the curve goes to infinity at an
accelerated rate. The appearance of the elbows occur at decreasing values of UH as we
increase UR . At large enough values for UR , the elbow appearance is immediate.

Analysis of the curves show that in the region to the left of the elbow, the
queueing effects due to rendezvous requests at the "Data-Exchange" entry have a minimal
impact on the Rendezvous Response Time. Thus for this region of UH , the Server
Processor basically serves both its traffic tasks and the SERVER-TASK as though the
traffic tasks and rendezvous requests were arriving directly at the Server Processor
queue for service. Such information could be used for bounding the arrival rates and
service demands of customers entering a two-processor system. Within these bounds,
the effects of the rendezvous will have a small effect on the system response time for the
client tasks. Outside of these bounds, an explosion in response time for the client tasks
will occur.
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